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S_Y

The directional emissivity and directional reflectivity of an infinitely

long isothermal asymmetric groove with diffusely emitting and reflecting gray

walls are analyzed, and numerical results are given. The directional emissivity

is presented as a function of the groove parameters and material emissivity,

while the directional reflectivity is presented as a function of these parameters

and the angle of inciderLt radiation. The directional reflectivity was found to

be greatest at angles close to the angle of the incident beam, in sharp contrast

to the commonly assumed diffuse or specular modes of reflection. The directional

emissivity was greatest close to the angle bisecting the groove. The results

thus indicate that the surface structure has a strong effect on the radiative

properties. Some examples of radiant-energy interchange between surfaces with

directional radiative properties are used to illustrate the large effects of

these surfaces on the energy interchange. The examples also illustrate how the

radiant interchange can be controlled to some extent by proper design of these

surfaces. The analysis is restricted to grooves with dimensions that are large

in comparison to the wavelengths of the radiation considered.
c-TH_!IL_

INTRODUCTION

The su_'face struct_,_e can have a strong influence on the reflective and

emissive properties of _m_terials. Not only can the absolute values of the emis-

sivity and reflectivity be changed, but the emitted and reflected energy can be

strongly directional because of the macroscopic surface structure. Calculation

of radiant interchange between surfaces based on the usual assumptions of diffuse

emissivity and specular or diffuse reflectivity can lead to large deviations from

the actual values (refs. i to 3).

The particular surface configuration of asymmetric grooves was chosen to in-

dicate this effect and to show how_ by proper design of surfaces, the radiant

heat transfer can be comtrolled to suit specific needs. Thus, it is possible by

design of surface structure to exercise some control over radiant interchanges.

The model to be analyzed_ shown in figure i, consists of an infinitely long

groove. One side of the groove is taken to be perpendicular to the base plane,

the other to be at some angle @ from the vertical side. The wall surfaces are

assumed to be gray and to emit and reflect diffusely. The environment is assumed



to have no effect except that there is incident radiation on the surface from an
emitter at a given angle. In reference l, the directional reflectivity and di-
rectional emissivity of a groove are treated whenthe walls of the groove are
considered to be specularly, rather than diffusely, reflecting, as in the present
case. The case of diffusely reflecting symmetric grooves is analyzed in refer-
ences 4 to 6 for the total absorption and emission, but the directional emission
and reflection are not considered.

In the present analysis, general equations for radiation from grooves are
given. The general equations are separated into equations for directional emis-
sivity and directional reflectivity. Both an exact and an approximate method of
solution are given. In the approximate method_the groove surface is divided
into large portions, each considered to have an average thermal flux.
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SYMBOLS

defined in eqs. (A15) to (A18), respectively

area of flat black elements (fig. 2)

area of cavity opening

offset distance of plate divided by distance between plates

width of emitter and receiver_ respectively

ratio from groove wall, qJqbenergy

shape factor from infinitesimal element at A to infinitesimal

element at B

exchange factor

height of groove wall normal to base plane

defined by eqs. (9) and (l_)

kernel, Csln2e)XY/(X 2 + y2 _ 2XY cos e) 3/2

length of oblique groove wall

thermal power; heat rate

thermal flux_ heat rate per unit area

energy ratio reflected from groove wall, qo/[qoE(COS _')(_'/2)]

absolute temperature of surface

distance along oblique side divided by H
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Y

Z

P

p'

E

!

q

P

cO

distance along side normal to base plane divided by H

coordinate normal to XY-plane

ab sorpt ivity

angle between normal to X-surface and line from receiver to groove

angle between normal to X-surface and line from emitter to groove

emi ssivity

angle between normal to base plane and line from groove to receiver,

e + _ - (_/2), deg

angle between norm_l to base plane and llne from groove to em/tter_

e + - .-.ieg

angle between walls of groove, deg

width of surfaces divided by distance between them; aspect ratio

position along base plane

reflectivity, i- e

Stefan-Boltzmann constant

angle between normal to diagonal _all and line from point X to

angle between normal to vertical side and line connecting points
and Y

Subscripts :

b

C

D

AE

f

G

i

0

point

X

black

cavity

diffuse surface

emitter

flat surface

groove

total energy incident on a surface

lower limit

total energy out including both reflected and emitted energies
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P perfect surface

2_R receiver

r radiated

t total

u nonirradiated

w wall

X at point X

Y at point Y

solution for reflectance

solution for emittance

Superscripts:

(--) integrated average value

(') incident beam

ANALYSIS

The model analyzed is shownin figure i. There is a groove of infinite
length in a plane. The short side of the groove is normal to the base plane and
of height H and will be referred to as the Y-surface. The diagonal side is of
length L and will be referred to as the X-surface. There is an open angle e
between the sides of the grooves. The surface of the groove walls is assumed
gray with constant emissivity _w and constant wall temperature Tw. The re-
flection and emission from the wall are considered diffuse. The environment is
assumedto have no effect.

Emitted and Reflected Energy from Groove

The rate of energy per unit area, thermal flux, leaving an element as X_
can be expressed as

qox = qw+ PwqiX (i)

where qw is the energy emitted from the surface element at X, Pw is the re-

flectivity of the surface, and qlx is the total incident flux. The flux is in-

cident on the element at X from two sources, the Y-surface and an external

source. The part of the thermal power per unit width leaving an infinite strip

on Y, which is intercepted by the element dZ H dX at X_ after using the re-



ciprocal relation dX d2Fdx_dY = dY d2FdY_dx is

qoY dZ H dX d2FdX_dY (2)

From reference 7_ the shape factor is

i d(sin m)d2FdX_dY =
(3)

where M is the angle between the normal to the X-surface and the line between

the elements dX and dY. From figure i it can be found that

Ycos 8 -X

sin qo = (9)1/2(y2 + X 2 _ 2XY cos

(_)

and

d(sin M) = (sin28)XY dY =- K(X,Y)dY

(y2 + x2 _ 2xY cos e)3/2

(5)

To get the total flux from Y incident on the element at X, equation (2) must

be integrated between the limits sin q0IY__O = -! to sin q01y=l.

There is flux qoE being radiated to the groove from an external source of

width AE and of infinite length in the Z-direction. The angle between the nor-

mal to surface X and the beam from the emitter to X is _'_ as shown in fig-

ure 1. Assuming the distance between the emitter and the groove is large com-

pared to the dimensions of the groove, the angle _' can be considered constant

over all X. The power arriving at X from the emitter is

qo_}{dX _Z cos _' Z_' (6)2

The total flux leaving an element at X is then

l

Pw , '

%x = qw + y %y_(X,Y)dY+ pw%_ll(_ ,X)_ (v)

where II is equal to zero for the part of the X-surface that cannot see the

emitter and cos _'/2 for the part of the X-surface that can. An angle q'

be defined as the angle betweenthe normal to the base plane and the incident

beam. This can be shown to be

can

q' =e+#' -_- (8)

Thus, with each fixed q' from -_/2 to +x/2, II will be zero on the X-
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surface except in the cases

8 > q' _ 0; all X 1Ii = cos _'

J 2
0 > q' >-_; X > X_,

(9)

where X Z, is the lower limit of the X-surface that can see the emitter and can

be shown to be

cosle+ _') (io)
XZ, = cos _'

It can be seen from equations (7) and (9) that is discontinuous at

X = XZ, in the cases where 0 > q' > -(_/2). qox

A procedure similar to that preceding can be carried out for the Y-wall to

find qoY" Let _ be the angle between the normal to Y and the line connect-

ing X and Y as shown in figure i. Then

sin _ = Y - X cos 8 (ii)

(x 2 + y2 _ 2x_ cos 0) l/2

d(sin 6o) = -K(X,Y) dX (12)

°%_r = % -y

1/cos

%xK(X,Y)ax + pw%_,m2(_',Y)_'
0

(is)

The term 12 again depends on Y

the following cases:

x_>q,
2--

seeing the emitter; 12

> 0; all Y _ cos(8 + _')
12 = -

> 8; Y > YZ'] 2

will be zero except in

(i_)

where YZ' is the lower limit of surface Y that can see the emitter and is
found by

COS #'

YZ' = 'cos e cos(13' + e) (15)

As before, qoY is discontinuous at YZ' for x/2 > q' > e.

Since equations (7) and (15) are linear, the problem can be separated into

simpler parts that can be added for the complete solution. The term qox can be
represented by the sum of two cases:

%x = %x,_ + %x, (16)



where qox,_ can be considered to be the total flux for the case in which there

is no external source and the wall temperature of the groove is constant at Tw,

and qox_ is the total flux for zero wall temperature; that is_ no emission

from the wall, with an i:,icident beam from an emitter at angle _'

Similarly_ qoY is

qoY = qoY,_ + qoY,{
(17)

Substituting equations (IC) and (17) into equations (7) and (IS) and letting the

flux from the external source be zero give the solutions for emission from the

groove. These may be no_dimensionalized and expressed as e/c_ the total flux

leaving the surface divided by the flux emitted from the surface:

0_i

0w eye_£= : i + -- -- K(x,z) Y
cw %,, 2 cw

(18)

.1/cos 0

ey : _ : i + p'---_I ex K(X,Y)dX

_w qw 2 ]0 ew

(19)

If_ instead_ the wall temperature Js held at zero, the solutions for reflection

from the groove are

rx qox,[ 2Pwll Pw fl= _ - -- + -- ryK(X,Y)dY (20)

qo ,(co n' 2 0o2

ry = qoy2_ 2PwI 2 Ow fl/cos' = -- + rXX[(X,Y)dX (21)
qo (C° oos 7- o

2

The term r is the ratio of flux reflected from the groove _all to total flux

incident on the groove. Equations (18) to (21) can be combined by means of equa-

tions (16) and (17) to obtain the complete solution of emission and reflection

from the groove _all.

Radiation to Receiver at a Given Direction from Groove

The p_¢er radiatin4_ from the surface of the groove in a particmlar direction

to a receiver can be calculated as follows: A receiver of width Z_R and infi-

nite in the Z-direction is located so that it will intercept the total radiation

leaving the sroove in a given direction _. The thermal power reaching the re-

ceiver from the part of an element of width dZ on side X directly visible to

the receiver is



Qx_m E _ cos_ £1/cos e
= 2 2_3 XZ qox dX

(22)

where _ is the angle between the normal to side X and the line from X to

the receiver. The receiver is considered to be far enough away in comparison to

the dimensions of the groove so that _ can be considered constant for all X.

The lowest point on wall X that is visible to the receiver is X Z.

The power reaching the receiver from an element dZ on side Y is

l
QY-AR : -K dZ cos(e + _) Z_8 qoY dY2

The total power arriving at the receiver from one groove is then

%-_ = _ _ _ _ __i/cos
e

2 -X_

(23)

1qoX_ - H _ oos(e + _) _ %y dY2
Y_

The limits on the integrals can be determined from the following:

0 < q < e: X Z = 0_ Y_ = 0 •

_" X_ = ! cos
e _q _2, cos _; YZ = cos e cos(_ + e) (25)

cos<e+ _)
-[_ q <0: X z =, cos _ ; YZ = I

can be broken into two parts_ one for emission and one for reflec-

The emission from a black surface on the base plane of area equal to the

base of one groove that is incident on the receiver is

_'b-zS,R = qb H dZ(tan 8)(cos q) Zk_
2 (27)

Using this to nondlmensionalize QG-Z_R_ gives the directional emissivity

%.-,_,# cos_ [1�cos s
_g,r-,1 -- -- j,. e X dX -

Qb-Z_R cos q tan 0 X_

cos(e+ _) fl
ey dY

cos q tan 0 _ YZ

(28)

%.-_ = %.-z_,_ + %-z_,_

Again, QG-ZkR
tion:

(26)



which is the ratio of power reaching a receiver at angle ri from the groove to

that that would reach the receiver from a black groove. The power from the emit-

ter incident on the base area H dZ tan @ of one groove is

QE-b= qoF,_ _Z(tan e)(oo_ _' ) 2
(ss)

This is also the total power incident on a width dZ of the groove. Nondimen-

sionalizing QG-AR_ by equation (29) gives the directio_al reflectivity of the
groove:

%-ZkR_ cos 5 A_/I/c°s 0 cos(e + _)ZM] /Z l= = rX dX tan _ 2 ry dY
Prl''_ QE-b tan _ 2 X_

(5o)

This directional reflectivity of the groove can be compared with the direc-

(p , ) of a flat diffuse s_rface with reflectivitytional reflectivity __] _,f
0w.

This _ill be defined by

(_, ) = pw(oos _i) _ (3L)

Dividing equation (50) by equation (51) gives

cos _ fl/cos e

Pw cos _ tan 0 JXZ

rX dX
fl

cos(e + 5) yy rr dYPw cos _ tan O

Z

(52)

NUMERICAL SOLUTION

Equations (20) and (21) were solved for rX and ry by an iterative numer-

ical procedure. Initial values of ry were assumed and substituted into the in-

tegral in equation (20). This integral _s then evaluated numerically to g_ve

values of rX. These values were used in equation (21) to obtain new values of

ry. This procedure was continued <mtil convergence was obtained. A difficulty

arose because of the integrand approaching infinity when both X and Y ap-

proached zero. This required the use of an analytical solution to evaluate rX

at X of zero and ry at Y of zero and the use of smaller increments of X

and Y near zero. For some of the cases, there _as a discontinuity in rX or

ry. This required that special care be taken in numerical integration through

the discontinuity. The region was broken into two parts around the discontinu-

ity_ and each part was integrated separately. Increment sizes were reduced until



the solutions did not change.

After r X and ry were obtained, they were substituted into equation (52),
which was numerically integrated to give the directional-reflectivity ratio

Pq' ,q/(Pq' ,q)f"

The method for finding ex, ey, and e_ follows a similar procedure. A

discussion of an alternate approach for finding eX and ey with a method for

speeding convergence is given in reference 6.

Values of Emissivity and Reflectivity at X and Y of Zero

The limiting values of r and e can be found as follows: From equa-

tion (20), rX at X of zero is

foI Ij 2PwZ 1Pw xY dY + , (3s)
rx X=O = _- sln2@ ry e)3/2 cos q

(X2 + y2 _ 2XY cos X=O

The integral can be evaluated as in reference ¢. There, it is clear that

J Pw J 2PwZ2rx X--O =-_-rY Y--O (cos _ + i) + 'cOS _'

and

j Jry Y=0 = _- rx X_0 (cos e + i) +
2PJ2 (35)
cOS _'

J J (i + cos e) ew
Pw I

ex X--O = -_" ey Y_O
+ (36)

The equations for

J % J (i+ cose)+ %ey Y=O = -2- eX X_O

eXlX= 0 and eyIy= 0 can then be simplified to give

exJx__--erJy -- %
i - _ (I + cos e)

(37)

(58)
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Approximate Solutions for Emissivity

Onemeansof obtaining an approximate solution is to assumeconstant average
values of total emission over finite segments of the groove _all. For the sim-
plest case_ where the segment is equal to the length of the groove waLl_ the av-
erage value can be defined as follows:

l/cos._e--wm cos @ eX dX
"0

(sg)

(¢o)

As shown in appendix A, the approximate directional emissivity is then

(cos _)_X (e I ) cos(_ + _)_yeS = (ta'n 6jcos D os e XZ -'(co_s D)tan 0 (I - Y_)
(_i)

where the values of X Z and YZ are given by equations (i0) and (15), respec-

tively, after replacing _' by _. The values of e--X and e--y are given by

equations (A4) and (A5). A similar approximate method w_s used in reference 6

except that a linear variation over the segment was used rather than the _a!l

emission being constant over the segment.

Approximate Solutions for Reflectivity

Approximate solutions for the reflectivity can be obtained in a somewhat

similar manner. Since the part of the groove wall that is irradiated directly

by the emitter wlll have a larger amount of energy reflected than the nonirradi-

ated portion and since the reflected energy is also discontinuous at the junction

between the irradiated and nonirradiated portions, it is necessary to divide the

problem into separate mean values for the irradiated portion and for the remain-

der of each wall. These portions can again be subdivided for greater accuracy.

For the simplest case of no subdivision of the segments_ the mean values are

- i #l/cos O

=('c ) Jv rxaXrxr i Xz XZ,
o_e

i /0 XZ'-- ___ rxdX
rxu XZ,

(42)
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-- 1 I"I

ryr _ '(i - YZ,) Jr ry dY
Y_.

_ i _0 YZ'ryu _ Yz' ry dY

where X Z, and YZ' are obtained from equations (i0) and (15), respectively,

and the subscripts r and u refer to the irradiated and nonirradiated seg-

ments, respectively. The ratio of the energy reflected to a receiver to that re-

flected by a flat diffuse surface is then, from equation (3B) and appendix A,

" i ) + if > XI]

P_' _q = cos p

(P_''_])f Pw c°s _]tan 8 ( )F i X_ if X Z < X ZXr cos e

+ cos(e+ 1 " h') + '- h) > YZ] (44)
PW cos E tan 8LFyr(l YZ ') if YZ' < YZ

if YZ ,

where the r terms are defined by equations (A7) to (AI7).

The solution will depend on which part of the wall is illuminated_ and so

three regions are possible:

(i) When only part of wall

Y_, = i, and X Z, = cps(e +._')
COS _'

(2) When only part of wall

X Z, =

X is illuminated (0 > q'

!
and Y_, -

e'COS
&

Y is illuminated [_ >

COS _ r

cos e cos(_' + e)"

-> - , then ryr = 0_

> 8), then r--yr= O,

(Z) When both X and Y are fully illuminated (O > q' > 0), r--xu= r--yu= 0

and X Z, = YZ, = 0.

Relations Between Directional Radiative Properties

The directional reflectivity can be related to both the directional emissiv-

ity and directional absorptivity by use of figure 2, as has been shown in refer-

ence i and is summarized in appendix B. This gives the relation

12



(45)
SC,1] = C_C, _

The directional reflectivitymay then be related to the directional emissiv-

ity as follows: The difference between the energy of the incident radiation from

direction _' and the total reflected energy must be the energy absorbed by the

groove. This can be written as

I_ PT_'_q
i- (p, ,_)

_-_/2 f

cos

This equation was used to check the reflectivities and emissivities obtained in

the numerical calculations. A reciprocal relation between the reflectivities is

also obtained in appendix B. For the present geometry, the relation is

P_]',_] PT_;_]' (47)

_TS

Emissivity Results

In figure 3 are shown eX and ey, the total energy leaving a groove wall

of emissivity cw compared wlth the emission from a black groove wall. In fig-

ure 3(a) this comparison is shown for groove angles e of 15 ° and 60 ° with wall

emissivity cw fixed at 0.i. It can be seen that eX and ey become larger

near X and Y of zero. This is due to multiple reflections increasing the

apparent emission from the surface in this region. This effect is less apparent

for the larger angle @ = 60 ° , and for this case the emission at the outer edge

of the groove wall is close to the direct emission of the groove wall. In fig-

ure 3(b), the effect of varying emissivity cw is shown. This lower cw causes

eX and ey to rise sharply near X and Y of zero because of the increased

interreflections at that point.

The directional emissivity c_ is shown in figure 4 for various groove

angles and wall emissivities. The directional emissivity is higher in every di-

rection for the groove than for a flat wall of the same wall emissivity. The en-

ergy emitted in angles zero to e is larger than that in other directions be-
cause of the interreflections at the base of the groove. The approximate solu-

tion yields curves that appear almost diffuse and deviate from the iterated solu-

tion. The approximate solution would be more correct if the groove wall were

divided into segments.

Also shown is the directional emissivity from a symmetrical groove, calcu-

lated from results in reference 6. The values e = eX = ey were calculated from

13



values shownin reference 6.

The directional emissivity was then numerically calculated from

[ Fc9 = e cos _ e dX - cos(e + _) e

2 cos _ sin _ X Z YZ

which was derived similar to equation (28).

(_8)

Reflectivity Results

In figure 5 is shown the thermal power reflected from the groove walls rX

and ry for both the approximate and the iterated solutions. The high value of

ry for _' = 60 ° occurs where the wall is illuminated by the incident radia-

tion. The discontinuity discussed earlier is evident.

The peak of rX for a 60 ° incident beam occurs on the X-surface at an XH/L

of about 0.65. This is the point on the X-surface that receives the greatest

amount of power reflected from the directly illuminated portion of the Y-surface.

For the i° incident beam; the entire groove surface is illuminated; however,

the peaks of rX and ry occur at X and Y of zero because of the many re-

flections at this point.

In figure 6, the directional-reflectivity ratio p_,,_/(p_, ) is pre-
_ f

sented for various incident beam angles _' This is the ratio of the direc-

tional reflectivity of the groove to the directional reflectivity for a flat sur-

face with the same diffuse reflectivity as the groove wall. The resulting re-

flectivity is neither specular nor diffuse. Instead, the energy is reflected

most strongly in the direction of the incident beam.

The largest values of the directional-reflectivity ratio occur for the larg-

est absolute value of incident angle, since_ for those cases_ the ratio of the

illuminated area of the grooved surface to the area of the flat surface of com-

parison is a minimum.

The iterated directional reflectivities are plotted for comparison with the

approximate solution_ and the agreement for large absolute angles h' is seen

to be good. In figure 7 is shown the effect of groove angle _ on the reflec-

tivity ratio for various incident angles. When the groove angle is near 90°_ the

surface is practically flat_ and the reflectivity ratio approaches 1.O.

The smaller values of the individual curves occur when only the unillumi-

nated portion of the groove can be seen. The larger reflectivity ratio occurs

when the receiver sees only the illuminated part of the groove.

In figure 7(a) the results for an incident beam at i° are given. An almost

diffuse reflectivity is obtained for e of 89.9 °.

14



In figure 8 is shownthe effect of wall reflectivity on the groove
directional-reflectivity ratio. The curves are similar in shape but show in-
creasing values for increasing wall reflectivities.

BEHAVIOROFSURFACESWITHDIRECTIONALEMISSIVITY

To illustrate the use of directional surfaces in radiant interchange, the
model shownin figure 9 is used. It consists of two semi-infinite parallel
plates of dimensionless width _ separated by a distance i. They are offset by
a dimensionless distance D. The upper surface is black (cw = i) and at tempera-
ture Tb. The lower sm_facehas a directional emissivity eq and is at tempera-
ture TG. The surrounding environment is at temperature TE. The net power
transferred between the surfaces can be written following Hottel (ref. 8) as

(,_9)

where fbG is the net exchange factor. This exchange factor indicates the

ability of two surfaces to exchange thermal power and is only dependent on their

geometry and emissivity. In order to find YbG' it must be assumed for simplic-

ity that the black surface is at Tb = O; then the net power exchanged between

the two surfaces is

_b d2_ _z c4 2 (5o)

Using equation (49) and the reciprocal relation AI#_I_2 = A2Y2_ I results in

i cosq d G d_ (51)

From figure 9, it can be seen that

4Z = arc tan(D - _)

_u = arc tan(_ + D - _)

An additional relation can be obtained as follows: If the black surface and the

environment are considered to be at T = 0° absolute, the emission from the di-

rectional surface will be the total of the emission to the black surface and the

emission to the environment:

15



(5_)

It can then be seen from equations (51) and (5_) that

"/' )](_c°s_d_d_ I551+ _ 2

_u

For a good absorber, it is desirable to gain as much power from the black emit-

ting surface and to lose as little energy to the environment as possible. This

same condition would apply for a good emitter, where it is desirable for as much

energy as possible to travel from the directional to the black surface_ but as

little as possible to travel to the environment.

Then_ for a good absorbing or emitting directional surface_ the follo_ring
must be maximized:

jo.[<<,.y_o- _o__-} - _
/2

a_ (56)

This will be a maximum if a "perfect" absorber is assumed with c = i

_u > _ > 7It and _ = 0 otherwise. Then

for

l{ }
(57)

For a diffusely absorbing or emitting surface_ £_ = cw, a constant_ to give

(58)

In figure i0_ the perfect and diffuse surfaces are compared with various direc-
tional surfaces.

It is also of interest to calculate the equilibrium temperature that these

directional surfaces would attain if they were considered insulated from conduc-

tion and convection and were receiving radiation only from the black emitting

surface. The environment is considered to be at TE = 0° absolute. For this
case_

16



which becomes

= = (YbO= YG )Tb FGt 2 - \ Fb G

(6o)

The fraction T_T_

tional surface that reaches the black surface.

tion (60) can be written as

is also the fraction of the total energy leaving the direc-

For the diffuse case, equa-

+ [i + (_- d)2] I/2 -
2(l+ d2)1/2

2_
(61)

and, for the perfect case, the temperature ratio (TUTb)4 is unity. The equi-

librium temperature ratios for various cases are plotted in figure ii.

It is seen from figures i0 and ii that it is possible to vary the heat ex-

change between surfaces by a large margin through proper design of the direc-

tional surface to attain the desired directional radiative properties.

In figure iO_ for an offset distance of 1.0, it can be seen that surfaces

with directional emissivities can be chosen as better absorbers or emitters than

diffuse gray or black surfaces over certain ranges of _. In figure ii, the

equilibrium temperature ratio of the directional surfaces is always higher than

that of a black diffuse surface for the case analyzed.

A surface with properties quite similar to those of a perfect surface is

analyzed in reference 9.

CONCLUDING REMARKS

This analysis shows the large effects on radiative surface properties that

surface irregularities may have. Since the wavelengths of thermal radiation may

be quite small, the size of irregularities that can cause these effects is also

small. Thus, great care must be taken in surface preparation of samples for

measurement of radiative properties, as there can be significant differences be-

tween the apparent and actual properties.

The results show_ too_ that the directional radiative properties of surfaces

can be controlled by design_ and thus radiative interchange between bodies can

also be controlled.
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The usual assumption of diffuse emission is not true for grooved surfaces
since the emissivity will be highest for directions bisecting the opening of the
grooves. Similarly, the assumption of diffuse or specular reflections is not
true since, in the case of grooves, the energy is primarily reflected in the di-
rection of the incident beam.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland, Ohio, June 2A, 1963
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APPENDIXA

APPROXIMATESOLUTION

Approximate Solutions for _issivity

Onemeansof obtaining an approximate solution is to assumeconstant average
values of total emission over finite segments of the groove wall. For the sim-
plest case, where the segment is equal to the length of the groove wall, the av-
erage values can be defined by equations (39) and (40). Then, equations (18)
and (19) become

--= i + d sin dX (A_I)

ew [4 ew Jsin q01"0 Y--0

--ey Pw -- 0_i I{ sinc°'x=OeX Jsin , _) c°1

--= i + ---- d sin dY (A2)

_w 2 _ _'x=(i/co_

Evaluation of the integrals is simplified by noting that

df

sin qO =

df
sin @ = - --

dY

where f = _(X 2 + y2 _ 2XY cos 0)1/2 .

(_) and (A2)become

(AS)

After evaluation at the limits; equations

--= i + (cos 9 - sin S + i)
cw T

- @)ey 0w
--=l+ (cose- sin o+i) (As)
ew 2 cos '8

Equations (A&) and (AS) are solved simultaneously. This same procedure

would apply if each groove wall were divided into k increments_ leading to a

set of 2k equations in 2k unknowns, and would give more accurate results.

The emission picked up by a receiver can be found from equation (28) as



(cos _)_x / l
c_ -- (%an e)cos _ [cos e cos(e+ _)_yX?, - (Cos h)tan 8 (i - YZ)

(A6)

where the values of X l and YZ are given by equations (i0) and (15), respec-

tively, after the replacement of _' with _.

Approximate Solutions for Reflectivity

Approximate solutions for the reflectivity can be obtained in a similar

manner. Since the part of the groove wall that is irradiated directly by the

emitter will have a larger amount of energy reflected than_ and is discontinuous

from, the nonirradiated portion_ it is necessary to divide the problem into sepa-

rate mean values for the irradiated portion and fo_the remainder of each wall.

These portions can again be subdivided for greater accuracy. For the simplest

case of no subdivision of the segments_ the mean values are given by equations

(42) and (45).

Equations (20) and (21) then become

2PwII 'co_ 8 ' 2-- = __+ i XZ d sin
rxr cos _ '

X_, Jsin _IY=Y_,

_ fsin _ly=yz '+ ryu

_sin _IY=O
d sin_l

dX (A7)

O/ _yr fsin _'Y=l fsin'y=YZ' q0/

Xz' d sin q_ + ryu d sin
-- i Pw

2PwI 2

ryr = cos _'

2O

i Pw

+ '(l- Y_,') _- d sin

YZ' sin _OIX=(1/cos e)

sin COlX__0 _)
+ r--xu f-- d sin

_sin _IX=Xz,

dY

dX

(AS)

(A9)



-- 1 PW

ryu = YZ' _-

_i_dx--(i/ooso)

m

d sin _+ rxu

(A.].O)

With the relations in equation (A3), the previous results can be integrated

to

( )- l xz AI + _Yui2 oos _% "coso + (m.1)rxr = -_- ,

-- Pw
(m2)

-- Pw

ryr = 2[(_L _ YZ,) (r'xzA1 + 7xuA3) +

2 Pill] 2
(m3)

cOS T_'

PW ! \

where

1/2 (_ =(x_,+• _,_, co__) + l/2, + i 2Yz ' - tan 0
cosgO

(al¢)

_(HI,÷_{,_,x,,h, _o__)_-/_ (ms)

( )_/_A, = (xz, + h,) - x_,+ z_, - 2xz,%, co_

The terms XI', YZ', Ii_ and 12

and (14), respectively.

(us)

are defined by equations (i0), (15), (9),
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The energy reflected to a receiver, then, from equation (32) is,

cos p

Pw cos q tan e

xz, ) + Fxu(X z, - x z) if x z, >x z

Xr(_o_l @ XZ) if X Z, < X Z

4- oo_(e+ p)
Pw cos _ tan e

_'Yr(1 " h') + _u(h' - h)

_yr(1 - YZ,) if YZ' < YZ

if YZ' > YZ
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APPF_YDI X B

RELATIONS BETWEEN GROOVE PROPERTIES

Consider a flat black element dABI and a cavity of arbitrary shape with an

opening of area dAC as shown in figure 2. These are in an isothermal enclo-

sure. The radiative characteristics of the internal surface of the cavity are

arbitrary. The radiation emitted from the black element and absorbed by the cav-

ity is

QBI-C = _C,_] dAc d2Fc-BIqBI (B1)

where the absorptivity _C,q is the ratio of energy absorbed by the cavity to

the energy incident on the cavity from dABI.

The energy radiate_ from the cavity to dABI and absorbed is

QC-BI = £C,_ d2Fc-BIqC dAc

Because both surfaces are at the same temperature, qc = qBl, and QC-BI

must equal QBI-C since, from the second law of thermodynamics, there can be no

net heat transfer between bodies at the same temperature. Thus,

Cc _ = _c (s3), ,rl

A reciprocal relation between the reflectivities can also be obtained. Con-

sider the isothermal cavity of figure 2 as containing two flat black elements

dABI and dAB2 in addition to the cavity. The heat transferred from dABI to

dAB2 by reflection from dA is

QBI-B2 = qBl d2Fc-BI dAcPc,_',_

Conversely, the radiation from dAB2 to dABI by reflection from

QB2-BI = qB2 d2Fc-B2 dAcOc_,_'

dA is

(Bs)

Because no net heat may be transferred between dABI and dAB2 when they are at

the same temperature, and the direct interchange has been shown to be equal, it

follows that QBI-B2 = QB2-BI and

OC,_',_ d2Fc-BI = PC_,_]' d2Fc-B2 (B6)

For the geometry considered here and with the reflectivity ratios previously

defined,
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P_'_rl pw cos _' cos h d_ drl =

( )
Prl'_rlf (p_.,q,) Pw c°s _ c°sqf 4

(B7)

which reduces to

P_'_ P_' (_)
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surface_ and the environment.
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